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Abstract--The motion of an individual sphere settling in the midst of a suspension of like spheres has 
been examined experimentally for suspensions with volume concentrations, ~, of 2.5-10%, under creeping 
flow conditions and in the absence of Brownian motion. In the experiments, silvered glass spheres were 
tracked in optically transparent suspensions of glass beads. Arrival times measured at a series of horizontal 
planes were converted into average settling speeds. These average speeds yield the hindered settling speed 
as a function of concentration. The hindered settling speed, normalized by the isolated sphere settling 
speed, exhibits a 1 - 4q~ + 8q~ 2 dependence for the range of concentrations investigated. The settling speed 
fluctuations are quite large, ranging up to 46% of the average, and have long-time (large settling distance) 
behavior characteristic of a Fickian diffusion process. Dispersion coefficients have therefore been 
determined from the asymptotic dependence upon settling distance of the variance in settling speed. These 
coefficients scale with the product of the hindered settling speed and the sphere radius. The dimensionless 
dispersion coefficients, all O(1), increase with concentration for ~b < 5%, then slightly decrease at higher 
concentrations. Verification of the scaling through the use of two particle sizes, care taken to mix the 
suspensions to random, uniform initial conditions, and the robustness of the statistics over many 
realizations preclude the possibility of this phenomenon being an experimental artifact and support the 
hypothesis that hydrodynamic dispersion of suspended particles will result from viscous interactions 
between the particles. 
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1. I N T R O D U C T I O N  

The velocity o f  a particle in the midst  o f  a flowing suspension o f  particles can be divided into two 
parts:  a mean  velocity, ( V ) ;  and a fluctuation,  V' .  In quiescent sedimentat ion,  i.e. the settling out  
under  gravi ty  o f  particles suspended in a quiescent fluid, the mean  velocity determines the 
sedimenta t ion  rate and the f luctuations influence, a m o n g  other  things, the spread o f  the interface 
between the sedimenting suspension and the growing clear fluid layer above.  In fluidization, the 
mean  velocity is the fluidizing velocity relative to a t ranslat ing frame,  and the velocity f luctuations 
contr ibute  to the response o f  the fluid bed to per turba t ions  in the local particle concentra t ion.  
Unders tand ing  both  par ts  o f  the particle velocity is therefore quite impor tan t  in unders tanding the 
macroscopic  behav ior  o f  systems o f  suspended particles. 

In  quiescent sedimenta t ion  under  creeping flow condit ions,  the mean  velocity will be in the 
direction of  gravity and have a magni tude,  ( V ) ,  p ropor t iona l  to the Stokes settling speed V0. The  
propor t iona l i ty  factor,  f ,  known as the hindered settling function, is dependent  upon  the volume 
concent ra t ion  o f  particles in the suspension, ~b. The  nature  o f  the dependence is dictated by the 
suspension microst ructure ,  i.e. the details o f  the relative posit ions of  the particles [summarized by 
Saffman (1973)]. I f  the particles are a r ranged  in a regular  lattice, then 1 - f ( ~ b )  is p ropor t iona l  to 
q~ ~/3, as ~b ---, 0. I f  the particles are a r ranged in a r a n d o m  fashion, with their relative posit ions fixed, 
then 1 - f ( ~ b )  is p ropor t iona l  to ~b ~/2, as q~ --*0. I f  the particles are a r ranged  in a r a n d o m  fashion, 
with their relative posi t ions free to change in order  to main ta in  a given net force, than  I - f ( ~ b )  
is p ropor t iona l  to ~b, as ~b ---, 0. 

The  case of  a r andom,  free suspension is the one mos t  likely to occur  in processes o f  practical  
interest, yet is in some ways the mos t  difficult to handle  theoretically. Because the particles are free 
to adjust  their relative posit ions,  a complete  analysis o f  r andom,  free suspensions mus t  account  
for  any adjus tments  of  the micros t ruc ture  which m a y  occur  due to the flow field in the suspension. 
This compl ica t ion  adds  to the a l ready imposing  p rob lem o f  considering interact ions a m o n g  m a n y  
particles, interact ions with effects which diminish quite slowly with distance. The  long range o f  
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interactions can lead to divergent integrals when summing the contributions to the velocity at a 
point in the suspension from an indefinitely large number of particles distributed randomly 
throughout the suspension. The problem of the divergent integrals was overcome by Batchelor 
(1972), using a renormalization technique to calculate the first, or O(~), correction to the mean 
settling speed. In order to make an explicit calculation, Batchelor considered a "well-stirred" 
suspension of identical spheres, a suspension in which all particle positions are equally likely, and 
found ( V ) / V o  = 1 -6 .554 ,  as ~ --,0. (Here, and in the remainder of this paper, " (  ) "  denotes an 
ensemble average.) Batchelor also showed, in his section 7, the O(~b) coefficient to be sensitive to 
the details of the random configuration of the suspension, e.g. a configuration favoring close pairs 
will have a lower coefficient. These considerations have been clarified and amplified by Hinch 
(1977), who, among other things, gives a compact expression for the O(~b) coefficient which 
involves the radial-distribution function characterizing the microstructure. 

Analysis of the mean settling speed leaves unresolved the problem of microstructural evolution 
in suspensions. Such changes in the relative positions of particles are likely because each particle 
in a random suspension sees a slightly different local environment and is therefore expected to have 
a velocity which is, in general, different from that of any neighboring particle. The variations in 
particle velocities will lead to an adjustment of the particle distribution. Evidence that such 
evolution may be significant can be drawn from an analysis due to Caflisch & Luke (1985) which 
extended the analysis of Batchelor (1972) to the variance in the settling speed. Caflisch & Luke 
found the variance to diverge as the number of particles in the suspension is allowed to increase 
without limit. This counterintuitive result may be an indication that the "well-stirred" particle 
distribution cannot be maintained in sedimentation, and that more information about the 
microstructure is required to understand the behavior of the velocity fluctuations. 

The first step in understanding the nature of the velocity fluctuations is understanding the 
mechanism that leads to the fluctuations. In a random suspension, some particles will be separated 
from their nearest neighbors by distances which are less than the average interparticle spacing. 
These close pairs will fall at speeds above the mean, and therefore overtake other, slower-settling 
particles. The ensuing three- and higher-body interactions will result, even under conditions of 
creeping flow, in a net displacement of particles. The net displacement will produce a change in 
the particle distribution and therefore a change in the particle velocities. The process of multibody 
interactions and configuration changes will continue as sedimentation proceeds. The random 
positions of the particles and a large number of interactions are expected to cause the details of 
individual interactions to be lost and an individual particle to execute a random walk through the 
suspension. Such a random walk process leads naturally to a description of particle migrations as 
a Fickian process. 

Particle migrations resulting from hydrodynamic interactions among particles, which will be 
termed "hydrodynamic dispersion", will, in general, be anisotropic since the velocity fluctuations 
parallel to the mean velocity may differ from those perpendicular to the mean. Hydrodynamic 
dispersion must therefore be characterized by a dispersion tensor, in contrast to the scalar 
coefficient which characterizes isotropic diffusion arising from Brownian motion. For the remain- 
der of this paper, however, only one component of the dispersion tensor, that parallel to gravity, 
will be considered. 

Once an analogy to Fickian diffusion is made, the associated dispersion coefficient, D, can be 
defined in terms of the long-time behavior of the distribution of particle positions, i.e. 

62 
D = lim - -  [1] 

, ~  2t '  

where 62 is the variance from some mean particle position at time t. In a sedimenting suspension 
fi 2 can be replaced with a2t2 where a:v is the variance from the mean particle speed measured over 
a time t. The substitution yields a more accessible form for D, i.e. 

D = lim ~r2vt ,+ < --~-- • [21 

The hydrodynamic dispersion coefficient will scale with the appropriate length scale,/~, and the 
scale to, for a given system, so that D ~ 12~/tc. The characteristic length in turn will scale with the 
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distance travelled between interactions, which is related to the interparticle spacing, which is 
proportional to the particle radius, a. The characteristic time will be the time required to travel 
that distance, which in sedimentation is proportional to a / ( V ) .  D therefore scales with (V)a .  This 
simple scaling results directly from dimensional considerations, once the assumptions of creeping 
flow of non-Brownian particles are made. The dimensionless coefficient,/5, will, in general, have 
a dependence upon ~ and the details of the microstructure. The microstructural dependence arises 
from the fact that the time between interactions is related to the difference between the velocities 
of the faster- and slower-setting particles, and the difference will be influenced by the relative 
positions of the particles. The influence of ~b comes about from the change in interparticle spacing 
with concentration of particles. 

Previous investigations of hydrodynamic dispersion of suspended particles have been made for 
both sheared and sedimenting suspensions. Dispersion coefficients in sheared, monodisperse 
suspensions of spheres have been determined experimentally by Eckstein et al. (1977) and Leighton 
& Acrivos (1987). Leighton & Acrivos showed the coefficient in shear flow to scale with the product 
of the shear rate and a 2, and to be proportional to ~b 2 as ~ ~ 0. Dispersion coefficients in quiescent 
sedimentation have been examined experimentally by Davis & Hassen (1988). A summary of the 
portion of their study related to hydrodynamic dispersion is given below. 

The experiments by Davis & Hassen investigated the spreading of the interface between a 
sedimenting, slightly-polydisperse suspension of spheres and the growing clarified fluid layer above. 
Davis & Hassen observed that the interface spread was greater than that predicted to arise from 
polydispersity and found the additional spreading could be attributed to dispersion. Dispersion 
coefficients were then inferred from initial spreading rates. The dispersion coefficients were 
nondimensionalized with the product of a median settling speed and particle radius, but the scatter 
in the dimensionless coefficients precludes any definitive conclusion as to the proper scaling. Their 
measurements, made at an interface, where a gradient in volume concentration of spheres was 
present, result in coefficients which will, in general, differ from coefficients measured within a region 
of uniform concentration. The experiments to be described herein measured directly the velocity 
fluctuations of an individual particle within the bulk of a suspension. 

Our objective was to characterize the nature of the movements of an individual particle settling 
in the midst of a suspension of like particles. The conceptually simple experiment designed to 
accomplish our objective was one in which a single sphere, marked with a thin coating of silver, 
was visually tracked in a suspension of unmarked glass spheres, made optically transparent by 
matching the index of refraction of the suspending fluid to that of the glass spheres. The marked 
sphere was timed as it settled past a series of horizontal planes in the suspension. The arrival times 
provided information on the settling speed necessary to find the hindered settling function and to 
examine the validity of describing hydrodynamic dispersion of suspended particles as a Fickian 
process. 

Presentation of our work begins with a description of the experimental system and procedure 
in section 2. Section 3 contains an overview of the method applied to analyze the experimental data. 
The results of the data. The results of the data analysis are discussed in section 4 and conclusions 
are summarized in section 5. 

2. EXPERIMENTAL SYSTEM AND PROCEDURE 

The combinations of fluid and particles used in the experiments were chosen to meet several 
criteria. First, the fluid and particles were to have the same index of refraction so that suspensions 
would be optically transparent, except for small bubbles and imperfections in the particles. An 
optically transparent suspension would allow observation of the test particle anywhere in the 
suspension. Second, the particles were to be large enough for simple visual tracking of any marked 
particle. Third, the fluid was to be viscous enough to maintain creeping flow conditions. Meeting 
the second and third criteria automatically satisfied the requirement that the effects of Brownian 
motion be unimportant. The fluid selected was Santicizer 278 produced by Monsanto. Santicizer 
278 is a benzyl phthalate plasticizer with index of refraction 1.51, density p = 1080 kg/m 3 and 
kinematic viscosity v = 8.45 x 10  - 4  m2/s at 24°C. The particles chosen were glass beads with index 
of refraction 1.51 and density Ps = 2420 kg/m 3. Two sizes of glass beads were used, one batch with 
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a diameter range of 595-707/~m and one of 420-500/~m. These combinations kept the particle 
Reynolds number, 2aVo/v, < 10 -4 and the Brownian Prclet number, 6npva 2 Vo/kT , > l0 II for all 
experiments. 

The particles, nominally between two adjacent mesh sizes when shipped from the manufacturer, 
were carefully rescreened to eliminate particles outside the desired size ranges. The rescreening 
consisted of two steps: vigorously shaking the particles on the undersize screen until no more 
particles would pass through then repeatedly passing the batch through the oversize screen, with 
only gentle shaking, until the particles passed through the screen without leaving any behind. 
Nonspherical and opaque particles were removed from the remaining particles by careful 
inspection. The density of the screened particles was checked by determining the weight of glass 
beads required to displace a known volume of liquid. 

Representative test particles were selected from each batch of screened glass beads. Each test 
particle was required to be nearly spherical and to have the same settling speed as any other 
representative particle in the suspension, i.e. to be "hydrodynamically" identical to the suspended 

• particles. These test particles were marked for visual tracking with the suspensions. Silvering was 
chosen as the method of marking particles because the uniformly smooth, thin coating of silver 
had inconsequential effects on settling characteristics yet made the marked particle easily visible. 
Several potential test spheres were silvered using the Brashear chemical silvering process (Strong 
1938). The silvered spheres were characterized by isolated sphere settling experiments. The test 
sphere chosen for a given size range was one with a settling speed, V o, which was repeatable to 
within 1.0% and close to that expected to be representative of that set of particles. 

All experiments were performed in glass columns of circular cross-section maintained at constant 
temperature by a temperature-controlled water bath. Two different glass columns were used: one 
of 6.0 cm dia for the larger particles; and one of 4.7 cm dia for the smaller particles. Each column 
had a height of 30 cm. The column diameters were chosen to be large enough to avoid serious wall 
effects, but small enough to alleviate bulk convection current problems described later in this 
section. The column height was chosen to allow the suspension enough distance for sedimentation 
to reach long-time behavior, i.e. for the variance in sedimentation speed to reach some asymptotic 
dependence upon settling distance. During the experiments the column in use was held in fixed 
position, with the column walls vertical, by tabs attached to the bottom of the water bath. 

Suspensions were made by filling the experimental column with a known volume of Santicizer 
278 then adding enough particles to reach the desired volume concentration. The concentration 
of the suspension was checked between every few runs by measuring the weights of the filled column 
and the height of the fluid in the column. This information, coupled with a knowledge of p, Ps, 
the empty column weight and the cross-sectional area of the column, allowed a simple deter- 
mination of the volume fraction of particles. The concentration from run to run varied by no more 
than 0.1% 

Suspensions were brought to initial conditions with a two-stage mixing process. The first stage 
distributed the particles nearly uniformly throughout the suspending fluid. The second stage 
smoothed out small regions in which the particle concentration differed significantly from the bulk 
concentration. The regions of inhomogeneities were visually identified by coherent convection 
currents which did not show signs of being damped by viscous forces. Preliminary mixing was 
carried out with an auger driven by a variable-speed drill motor. The auger, coated with epoxy 
to prevent oxidation by the fluid, had a diameter of approx. 2.5 cm. Final mixing was accomplished 
with a thin, glass stirring rod. The stirring rod had a diameter of approx. 3 mm. 

The test particle was placed into the suspension through a glass pipette having a long, slender 
tip of diameter only slightly larger than the particles. The pipette slid into a bracket placed against 
guides on top of the water bath above the experimental column. The two-piece launching system 
was a simple means of forcing the test particle to enter the suspension at the same position at the 
start of each sedimentation run. 

Each sedimentation run consisted of mixing the suspension, launching the test particle and 
measuring a sequence of arrival times of the test particle at a set of horizontal planes. The procedure 
for each run was identical. First, the auger was placed in the suspension until thermal equilibrium 
was reached. Next, preliminary mixing began, continuing 2-3 min beyond the time at which the 
particles appeared to have a random, uniform distribution throughout the suspension. Upon 
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completion of the preliminary mixing, the mixer was slowly removed from the column, taking care 
not to sweep particles into a wake behind the auger. The auger was placed in a beaker during the 
ensuing run to collect for reuse any residual suspension. Then, final mixing insured attainment of 
a homogeneous initial state. 

After achieving the desired initial conditions, the suspension was allowed to settle for a short 
time. During this time an interface formed between the suspension and a growing layer of clear 
fluid at the top of the column. The test particle was introduced into the suspension when this 
interface reached a predetermined horizontal plane. The position of the plane was such that the 
test particle entered the suspension approx. 3 cm below the interface and 3 cm above the horizontal 
plane at which tracking would begin. 

A cathetometer was set to view the initial horizontal plane and timing began when the test 
particle arrived at the plane. The cathetometer was reset to a plane 1 cm below the previous plane, 
then the arrival time and transverse position at the plane were logged into a small laboratory 
computer. Figure 1 contains a schematic of the column and the cathetometer. This procedure was 
repeated until the test sphere had fallen 10 cm. (A total settling distance of 12 cm was used for 
~b = 2.5%. This larger distance was deemed necessary, with the larger interparticle spacing, to 
provide enough time to reach asymptotic behavior.) After the run, the test sphere was retrieved 
and the mixer was placed back in the column for thermal equilibration. Any fluid and particles 
recovered in the beaker were poured back into the column to maintain the proper level and 
concentration. 

Additional observations of the interior of the suspension were made as each r n progressed. 
These observations were to check for the bulk convection currents due to imperfections in the 
mixing. "Imperfections in mixing" are not the expected random variations in the particle 
distribution, but are variations in the concentration of particles over length scales of the order of 
the vessel size. Variations in the concentration produced gradients in the effective density of the 
suspension which drive convection currents. The strength of these convection currents is propor- 
tional to L 3, where L is the distance over which the density gradient extends. Since L can be of 
the order of the vessel size, excursions from the mean speed due to convection currents can 
dominate the motion of particles during sedimentation. The bulk convection currents, which persist 
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throughout the course of  sedimentation, produce coherent structures in the midst of the suspension 
having little effect upon the interface between the suspension and the clear fluid. Only careful 
observations of  the interior of  the suspension can reveal existence of  these currents. Runs during 
which coherent structures persisted were stopped and eliminated from the data base. Further 
statistical tests, described in section 3, were used to eliminate data from runs which, although not 
visually affected by such currents, may have been influenced by poor mixing. 

The position of  the interface relative to the test particle was also monitored during the course 
of each run, as an additional consistency check. The definition of the interface position was 
somewhat subjective since all observations were visual and interface spread was not quantitatively 
accounted for. The interface, however, appeared quite sharp for all runs except those at ~b = 2.5%, 
so the trends in the observed average interface speed and the trends in the average particle settling 
speed should exhibit the same qualitative behavior. 

Enough sedimentation runs were made for a given concentration and particle size to provide a 
statistically satisfactory data base, the criteria for which will be described in the section 3. The 
number of  runs required to meet these criteria was typically between 20 and 30. 

3. DATA ANALYSIS  

The main objectives of the experiments were to measure the mean settling speed as a function 
of ~b and to determine the long-time behavior of the fluctuations in the settling speed. To meet these 
ends, the data were analyzed to a two-stage process: first, the statistical significance of  the data 
base was evaluated; second, expected values and confidence intervals for all the quantities of 
interest were calculated. The details of  this analysis are presented in this section. 

An average settling speed for each run was calculated from the total settling time and the total 
settling distance. A cumulative average, Uj, and standard deviation, AUj, of  these speeds were 
maintained as runs, j, were added to the data base for each experimental series. When ~ and A ~  
reached stationary values the data base was deemed sufficient to produce meaningful statistics. 
Figures 2a and 2b show typical evolutions of  ~ and A ~  with the number of runs included in the 
data set for ~b = 5.0% and 2a = 470 pro. [For a complete set of  figures see Ham (1988).] The fact 
that ~ and AUj attained values which did not change appreciably with the size of the data base 
indicated that additional runs, while improving the confidence intervals for various statistical 
quantities, would provide little new information about the expected values of  those same quantities. 

Detailed data reduction began with conversion of arrival times into a sequence of speeds 
calculated over intervals ranging in size from I to 10cm (12cm in the 2,5% case) in l cm 
increments. Sample means, Vk, and variances, St ,  of  the speeds were determined for each interval 
size. With reference to figure 1, these quantities were calculated as follows: 

k 
Uok -- t i + k , j -  tis' [3] 

K J 

V, - ' = '  J=' [4] 
N 

and 

where 

K J 

E Z (u,jk- vk) 2 
s 2  i=l  j =l 

N -  1 ' [5] 

tij = arrival time at horizontal plane i during run j, 
i = horizontal plane number (0, 1,2 . . . . .  I), 
j = run number, 
k = interval size (1, 2 . . . . .  I), 
J = total number of runs in series, 
K = number of  intervals of size k in a run, I + 1 - k 



H I N D E R E D  S E T T L I N G  A N D  H Y D R O D Y N A M I C  D I S P E R S I O N  539 

1.20 

1.15 

1.10 

1.05 

I .OC 

0.95 "-" 

0.90 i 

0.85 - 

0.80 i 
0 

0 [] 

0 

0 0 

0 0 
13 

0 0 0 0 
O D o O Q  

I I I I I I I I [ I I I I I ~ I I I 

I O 20 

j ,  RUNS INCLUDED IN SAMPLE 

Figure 2a. Evolution of  cumulative average sedimentation speed with the number of  runs included in the 
statistical sample, for 470 p m  particles at ~ = 5.0%. 

28.0 - 

24.( 

20.( 

,.; 16.( ::3 

12.0 

8 .0  

4.0 

0.0, 
0 

0 
0 

0 

0 

0 0 0 0 0 0 0 0  
O 0 0  0 0 0  

I I I I I I I I I I I i I I I I I I I 

iO 

j ,  RUNS INCLUDED IN SAMPLE 
20 
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and 

N = K × J .  

The hypothesis that an individual particle executes a random walk, described in section 1, 
requires normal distributions of speeds for interval sizes large enough to exhibit asymptotic 
behavior. Neither the validity of  such a hypothesis nor the interval size requirement for long-time 
behavior were known a priori, so the data were treated under the assumption that speeds for all 
interval sizes fell in normal distributions. The normal distribution assumption also allowed 
calculation of confidence intervals for the means and variances of  the speeds (Meyer 1970) and gave 
a good criterion for eliminating outlying data. Any run was an interval speed falling outside the 
range of Vk + 4 × (S2k) 1/2 was eliminated from the data set. This criterion eliminated only a few runs 
from each data set. 

The random walk hypothesis also predicts that the settling speed of a particle will become 
uncorrelated with its initial settling speed after some characteristic time 3. If  T is less than the 
average time required for the particle to travel a certain number of  intervals, then the particle can 
be considered to begin a new realization after traveling that number of  individual. We did not know 
3, so we performed serial correlations with the 1 cm interval speeds for each run. Correlation 
coefficients between adjacent intervals within a run rarely exceeded 0.5 and average coefficients for 
a series of  runs were typically around 0.3. We therefore considered interval speeds sufficiently 
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Summary of sample statistics for 470#m particles 
(110= 17× 10-4m/s, V~/Vo=0.84, I= 10, J=20) 

at ~b = 5.0% 

r'~/Z, 100 × S~/Z~ 

90% Confidence 90% Confidence 
limits limits 

Sample Sample 
k h/2a mean Lower  Upper mean Lower  Upper 

1 21.3 1.16 1.10 1.21 21.0 16.8 27.5 
2 42.6 1.08 1.04 1.13 13.2 10.5 17.3 
3 63.8 1.05 1.01 1,09 8.98 7.16 11.7 
4 85.1 1.03 0.98 1.06 7.23 5.76 9.45 
5 106.4 1.01 0.97 1,05 5.76 4.59 7.53 
6 127.7 1.00 0.96 1.04 4.73 3.77 6.18 
7 148.9 0.99 0.96 1.03 3.70 2.91 4.93 
8 170.2 1.00 0.96 1.04 3.37 2.56 4.73 
9 191.5 1.00 0.95 1.04 2.97 2.12 4.51 

10 212.8 1.00 0.94 1.06 2.64 1.66 4.96 

uncorrelated to allow us to expand our statistical base by considering the test particle to have 
started a new realization, of correspondingly shorter overall duration, at each horizontal plane i. 
The expanded data base improved our confidence limits but had little other effect. A complete 
description of the serial correlations can be found in Ham (1988). 

An example of the sample statistics for the series of runs at ~b = 5.0% and 2a = 470/~m is 
presented in table 1. [For a complete set of tables see Ham (1988).] Two important features of the 
statistics in table 1 should be noted. First Vk becomes constant at larger values of k, therefore V~ 
is taken as the best estimate of (V) .  The initial dependence of Vk upon k is the result of our 
measurement technique. We did not measure instantaneous speeds and time-average them over the 
time required to traverse an interval, but instead measured the total time required to settle through 
an interval and used distance/time as the average speed. The two types of averages are different, 
but their ensemble averages approach the same value as the interval size becomes large (Ham 1988). 
Second, the sample variances, taken to be estimates for a~, decrease significantly and monotonically 
with increasing interval size. The means and variances from table 1 and from the sets of statistics 
for the other series of runs are used in section 4 to yield results on hindered settling and 
hydrodynamic dispersion. 

4. RESULTS AND DISCUSSION 

Hindered Settling 

Figure 3 presents V~ calculated at fixed postions i, in the column for q~ = 5.0% and 2a = 470/~m. 
That this mean settling speed has no correlation with interval position is evidence for considering 
sedimentation in the experimentally examined region of the column to be representative of 
sedimentation in a bulk suspension. In other words, the lack of any significant trend in the mean 
settling speed as the test particle moved down through the column indicates that no transients due 
to poor mixing, disturbances from the injection procedure, the spreading of the suspension 
interface, or the growth of the sediment layer on the bottom of the column were present. 

Table 2 and figure 4 present the experimentally determined dependence of (V)/Vo upon ~b. The 
interface speed, u(~b), is presented in figure 4 as (u(dp)/Iio) x (Vi/u)# = 5°/° to avoid difficulties with 
estimating u0. Two important features of figure 4 should be noted. First, the dimensionless settling 
speeds for two different particle sizes at ~ = 5% match within 90% confidence intervals, so we shall 
consider scaling the hindered settling speed with If0 to be appropriate, as is generally accepted. 
Second, the interface speed and the single particle speed diverge at ~b = 10%, raising a question 
about the validity of the 10% data. The second feature will be examined in more detail. 

111 at ~b = 10% is suspect because this point does not coincide with the expectation that the slope 
off(~b) becomes less steep outside the dilute concentration region. Following up on the suspicion, 
two different quadratic least-squares fits were made to the data: one including all the V~/Vo and 
another excluding Vt/Vo at ~b = 10%. The results of these fits are presented in table 3 and 
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Figure 3. Deviation of  Fm calculated at set positions in the column from V, calculated for all I cm intervals, 
for 470/ t in  particles at 4, = 5.0%. 

Table 2. Mean settling speeds and I cm interval fluctuations 

4, ( % )  

V,/Ve 

90% Confidence 
2a (~m) Mean interval (%) (S~/V~) '/2 (%) 

2.5 650 0.89 -4- 5 25 
5.0 470 0.84 + 6 46 

650 0.81 -t- 5 39 
8.0 650 0.73 ± 6 45 

10.0 650 0.61 + 5 43 

Table 3. Hindered settling function least-squares regression 
results 

CV" over indicated region (%) 

Regression curve 0 < 4, < 8% 0 < 4, < 10% 

0.99 - 2.94, - 7.14, = 2.6 2.5 
l.O - 3.94' + 8.24, 2 1.8 4.8 

aCV = coefficient of  variance (Myers 1986). 
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Figure 4. Hindered settling function: &,  2a=650 /Am;  &,  2 a = 4 7 0 / ~ m ;  O,  interface data for 
2a = 650 # m ;  , I - 3.94, + 8.24,2; - - - ,  0.99-2.94, - 7.14,2; . . . .  , Ba tchdor  (1972). Error  bars on 

the experimental values represent 90% confidence intervals. 



542 J, M. HAM and G. M. HOMSY 

figure 4. The fit with all the data, f(~b) = 0.99 - 3.04~ - 7.1~b 2, is unsatisfactory because of the 
negative coefficient for the q52 term. The latter fit, f (~b)= 1 .00-  3.9~b + 8.24~ 2, is more satisfying 
for two reasons. First, the curve comes very close to predicting the interface speed at ~b = 10%. 
The exact relationship between an interface settling speed and the settling speed of an individual 
particle in the bulk is not entirely clear, but the sharpness of our interfaces for ~b >~ 5% prompted 
us to use this as a qualitative check. Second, the curve is nearly the same as that from a 
Richardson-Zaki (1954) correlation, f ( ~ b ) = ( l - ~ b ) " ,  with n =4 ,  which would expand to 
1 -4 tb  + 6t~2+ O(~b3). Some problem with the mean settling speed at q5 = 10% therefore seems 
likely. Unfortunately, no explanation for the problem with the 10% settling speed can be given 
at this time. The data from that runs series exhibited, in all other respects, the same qualitative 
behavior as the data from all the other series of runs. 

Both estimates of the O(~b) coefficient are significantly below the value of 6.55 arising from the 
analysis of Batchelor (1972), in which a "well stirred", monodisperse suspension is assumed. Our 
suspensions were slightly polydisperse, so a comparison with the work of Batchelor (1982) and 
Batchelor & Wen (1982) is more applicable. The limit of a nearly-monodisperse suspension of 
equidensity spheres in Batchelor & Wen is complicated, but in the limit of negligible Brownian 
motion effects the O(~b) coefficient is bounded from below by 5.6. Still, our value of 4 is lower. 
These discrepancies suggest a more complicated microstructure, the nature of which may only be 
accessible through simulations, such as those described in Durlofsky et al. (1987). 

Finally, we quote for comparison one other recent set of experimental results on hindered 
settling--those of Davis & Birdsell (1988). Davis & Birdsell determined the hindered settling 
function by measuring the settling speed of the interface between a suspension and the clear fluid 
above. Comparisons of our results with interface measurements, which are readily available in the 
literature, are made difficult by the fact that the interface spreads during sedimentation (Davis & 
Hassen 1988). Each layer in a spreading interface has its own distribution of particle sizes and local 
value of ~b, thus complicating the relationship between the settling speed of layers in the interface 
with that of an individual particle somewhere in the bulk of the suspension. Davis & Birdsell, who 
were very careful in characterizing their suspensions and interfaces, found the settling speed of the 
horizontal plane in the interface with a local value of ~b equal to half the bulk value could be 
described by a Richardson-Zaki correlation with n = 5, when that speed was normalized with the 
Stokes settling speed of a sphere with the median particle diameter. The Davis & Hassen result 
lies between the Batchelor (1972) or Batchelor & Wen (1982) result and our experimental data. 

Hydrodynamic Dispersion 

The most striking aspect of the observed variances in settling speed is their magnitude. As the 
results in table 2 show, the 1 cm interval fluctuations ranged from 25 to 46% of the mean. In 
addition, the variances in settling speed were observed to depend upon the interval size, with the 
variance decreasing with increasing interval size. The variance in settling speed decreases linearly 
with the inverse of the settling distance, or interval size, for the random walk process. This linear 
dependence on the inverse settling distance arises when the settling time, t, in [2] is replaced with 
h / ( V ) ,  where h is the settling distance. The relation for the dimensionless dispersion coefficient, 
E) = D /(  V)a,  then becomes 

/5 = lim o'2H; 
H ~ o c  

and 

0 -2 ~__. 0"2v 

< v >  2 

h 
H = 2--~" [6] 

The random walk hypothesis therefore requires that the slope, ~, of a log-log plot of a 2 vs H be 
- 1 in the limit of  large H. Figure 5a presents an example of such a log-log plot and the resulting 
least-squares fit for ~b = 5.0% and 2a = 470/~m [see Ham (1988) for a complete set of figures]. The 
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Figure 5a. Asymptotic behavior of a 2 as H ~ oo for 470 #m particles and ~ = 5.0%. Error bars on the 
experimental values represent 90% confidence intervals. The best-fit line is from a linear regression 
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Figure 5b. Asymptotic behavior of a 2 as 1/H --* 0 for 470 #m particles and ~b = 5.0%. Error bars on the 
experimental values represent 90% confidence intervals. The best-fit line is from a linear regression 

including only data for I/H < 1/H=. 

f ac t  t h a t  a = - 1, w i t h i n  9 0 %  c o n f i d e n c e  l imi ts ,  f o r  e a c h  d a t a  set,  as  s h o w n  in t a b l e  4, p r o v i d e s  

e v i d e n c e  t h a t  t h e  v a r i a n c e  b e h a v e s  as  i t  s h o u l d  fo r  a r a n d o m  w a l k  p roces s ,  j u s t i f y i n g  d e s c r i p t i o n  

o f  p a r t i c l e  m i g r a t i o n s  in  s e d i m e n t a t i o n  as  a F i c k i a n  p roces s .  

T h e  d i s t a n c e ,  Hoo, a t  w h i c h  t h e  f l u c t u a t i o n s  h a v e  r e a c h e d  a s y m p t o t i c  b e h a v i o r  d e t e r m i n e s  t he  

d a t a  p o i n t s  w h i c h  s h o u l d  b e  i n c l u d e d  in  a l e a s t - s q u a r e s  r e g r e s s i o n .  T h i s  d i s t a n c e  is n o t  k n o w n  a 

priori, a n d  s ince  [6] is o n l y  a n  asymptotic r e l a t i o n ,  H ~  is a v a g u e l y  d e f i n e d  q u a n t i t y .  T h e  n a t u r e  

Table 4. Random walk verification least-squares regression results: tr 2 = / )  x H • 

cta 90% Confidence . 
limits 

90% Confidence 
~b (%) 2a H~ Mean interval Mean Lower Upper CV (%) 

2.5 650 77-92 -- 1.00 +0.05 2.1 1,8 2.4 2.7 
5.0 470 64-85 -- 1.05 + 0.05 7.4 6,6 8.4 i. 1 

650 77-108 --0.98 +0.10 5.0 3.7 6.7 1.3 
8.0 650 31-46 --0.95 +0.05 3.4 2.9 3.9 1.4 

10.0 650 31-46 -- !.01 +0.01 3.7 3.4 3.9 0.8 

"a is the slope of  a linear least-squares regression of  log(100a 2) vs log(H). 
b/5 is from the intercept of  the same linear regression, i.e. the intercept of  log(100a 2) vs log(H) is 

2 + log(15). 
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Table 5. Dimensionless dispersion coefficients least-squares regression results: 
a 2 = D I H  + a2o 

fi 

90% Confidence 
~b (%) 2a ~ m )  Mean interval 100a02 R 2a CV (%) 

2.5 650 2.1 +0.8 0.01 0.993 1.2 
5.0 470 6.0 + 1.5 - 0 . 0 9  0.991 2.0 

650 5.1 +2.5 0.19 0.983 1.7 
8.0 650 4.0 + 1.0 0.21 0.990 1.9 

10.0 650 3.5 +0.6  0.08 0.999 0.9 

aR2= correlation coefficient (Myers 1986). 

of H~ in our experiments is even less clear since we measured arrival times and not instantaneous 
speeds nor positions at fixed times. Therefore, for our purposes, H~ has been selected as the 
distance beyond which the measured variance shows consistel, t power law dependence upon H. 
This point was determined by examination of plots such as the one shown in figure 5a. Two 
statements can be made regarding H~: first, Ha is always greater than the 1 cm interval distance, 
despite serial correlations having shown little correlation between 1 cm interval speeds; second, the 
values are small enough to insure that a settling distance of 10-12.5 cm was sufficient to reach 
asymptotic behavior and provide adequate data to determine/5. 

Dimensionless dispersion coefficients can be found from the log-log plots of a 2 vs H, as shown 
in table 4, but once the random walk hypothesis has been verified more rigorous bounds for /5  
can be found by taking /5 to be the slope of a 2 vs 1/H in the limit as 1/H--,O (H~oo). 
Figure 5b presents an example of a 2 vs I/H and the resulting least-squares line for q~ = 5.0% and 
2a = 470 #m [see Ham (1988) for a complete set of figures]. The values o f /5  calculated in this 
manner are given in table 5. Several important features of the results in table 5 are described in 
the following paragraph. 

First, the 90% confidence intervals contained in table 5 reflect the 90% confidence intervals for 
the variance used in the regressions. These confidence intervals are roughly an order of magnitude 
larger than those arising simply from regressions of the expected values. If  the values for the 
confidence limits in table 4 had been calculated in a similar fashion, then they, too, would have 
been correspondingly more widespread. Second,/5 in table 5 differs slightly f rom/5 calculated in 
table 4, since best-fit lines of a 2 vs 1/H from our data do not pass exactly through to origin. The 
intercepts are, however, quite small and are simply reflections of experimental errors and of the 
confidence intervals on the variances. Finally, the dimensionless dispersion coefficients at 5.0% for 
the two different particle sizes each lie within the 90% confidence limits of the other. This indicates 
that the proposed scaling is not inconsistent with experimental results and provides evidence 
behavior is not an experimental artifact, e.g. a result of a bias in the initial mixing process. 

Figure 6 shows the dimensionless dispersion coefficient to have a dependence upon concentration 
which is weak, but significant between ~b = 2.5 and 5%. The coefficient increases from 2 at ~b = 25% 
to 5-6 at 5%, then levels off or slightly decreases at higher concentrations. One possible explanation 
for the increase at low concentrations is an increase in the probability of multiparticle interactions 
as the concentration of particles increases. For example, at higher concentrations, an interacting 
pair of particles is more likely to interact with a third particle. These multibody interactions, as 
described in section 1, are an essential part of the mechanism leading to the random walk of a 
sedimenting particle. The leveling off or decrease at higher concentrations may be due to a 
restriction of particle movement as the interparticle distances become shorter, i.e. changes in the 
relative positions of particles are limited by the close proximity of nearest neighbors. 

Figure 6 also contains a comparison of our results with the range of dimensionless dispersion 
coefficients reported by Davis & Hassen (1988). The comparison must be made with the 
understanding that Davis & Hassen inferred their coefficients from the initial spreading rate of an 
interface at the top of a sedimenting suspension, with the result that their determination was made 
with certain assumptions about polydispersity and hindered settling effects. Furthermore, their 
measurements were made in the presence of a gradient in volume concentration, and so quantitive 
agreement between the two sets of results cannot be expected since tracer and gradient diffusion 
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Figure 6. Experimental values of dimensionless dispersion coefficients: &, 2a = 650 #m; A, 2a = 470/~m; 
ca, Davis & Hassen (1987). Error bars on the experimental values represent 90% confidence intervals. 

are not, in general, equivalent, and their measurements represent an average over a concentration 
range. The two sets of coefficients are, however, of the same magnitude, with ours being somewhat 
lower than those of Davis & Hassen. More importantly, both experiments show coefficients which 
increase with concentration at low concentration and which plateau or decrease at higher 
concentrations. Surprisingly, both experiments show the change in behavior near a suspension 
concentration of 5%. 

5. CONCLUSIONS 

The hindered settling speed of an individual sphere internal to a random suspension has been 
measured directly for volume concentrations from 2.5 to 10%, under conditions of creeping flow 
and in the absence of Brownian motion. Scaling the mean settling speed with the Stokes settling 
speed is consistent with experimental results, as indicated by the close agreement of (V)/Vo for 
two different particle sizes at the same concentration. The resulting hindered settling function has 
an O (q~) coefficient below that determined for a "well-stirred" suspension. The discrepancy between 
our experiments and theoretical predictions is a strong indication of structure development even 
in suspensions which sediment from a random, thoroughly-mixed initial state. 

The fluctuations in settling speed over relatively short settling distances have been found to be 
surprisingly large and the long-time (large settling distance) behavior of the variance in sedimen- 
tation speed has been shown to be that characteristic of a random walk, or Fickian diffusion 
process. Scaling the resulting dispersion coefficients with the product of hindered settling speed and 
particle radius is consistent with our data as indicated by the close agreement between the 
dimensionless coefficients for the two different particle sizes. The scaling agreement combined with 
the robust statistics produced by multiple, independent realizations are evidence that this dispersion 
phenomenon is a purely hydrodynamic effect, not an experimental artifact. The extremely low 
Reynolds numbers, the short time required for the phenomenon to appear, and, again, the close 
agreement between the coefficients for the two particle sizes, reduces the probability of this being 
an inertial effect. The large Brownian Prclet number, and the correspondingly large ratio of 
hydrodynamic dispersion to Brownian diffusion, eliminates the possibility of this being a Brownian 
motion effect. The observed dispersion is therefore concluded to be the results of viscous 
hydrodynamic interactions between suspended particles. 

The dispersion coefficients found in our experiments are somewhat lower than those inferred by 
Davis & Hassen (1988). Quantitative agreement is not to be expected, owing to the difference 
between tracer and gradient diffusion. The agreement is, however, sufficient to provide additional 
confidence to the conclusion that hydrodynamic dispersion is an observable phenomenon. 
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